Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Diagnostics (Basel) ; 13(8)2023 Apr 07.
Article in English | MEDLINE | ID: covidwho-2301787

ABSTRACT

Shortly after its emergence, Omicron and its sub-variants have quickly replaced the Delta variant during the current COVID-19 outbreaks in Vietnam and around the world. To enable the rapid and timely detection of existing and future variants for epidemiological surveillance and diagnostic applications, a robust, economical real-time PCR method that can specifically and sensitively detect and identify multiple different circulating variants is needed. The principle of target- failure (TF) real-time PCR is simple. If a target contains a deletion mutation, then there is a mismatch with the primer or probe, and the real-time PCR will fail to amplify the target. In this study, we designed and evaluated a novel multiplex RT real-time PCR (MPL RT-rPCR) based on the principle of target failure to detect and identify different variants of SARS-CoV-2 directly from the nasopharyngeal swabs collected from COVID-19 suspected cases. The primers and probes were designed based on the specific deletion mutations of current circulating variants. To evaluate the results from the MPL RT-rPCR, this study also designed nine pairs of primers for amplifying and sequencing of nine fragments from the S gene containing mutations of known variants. We demonstrated that (i) our MPL RT-rPCR was able to accurately detect multiple variants that existed in a single sample; (ii) the limit of detection of the MPL RT-rPCR in the detection of the variants ranged from 1 to 10 copies for Omicron BA.2 and BA.5, and from 10 to 100 copies for Delta, Omicron BA.1, recombination of BA.1 and BA.2, and BA.4; (iii) between January and September 2022, Omicron BA.1 emerged and co-existed with the Delta variant during the early period, both of which were rapidly replaced by Omicron BA.2, and this was followed by Omicron BA.5 as the dominant variant toward the later period. Our results showed that SARS-CoV-2 variants rapidly evolved within a short period of time, proving the importance of a robust, economical, and easy-to-access method not just for epidemiological surveillance but also for diagnoses around the world where SARS-CoV-2 variants remain the WHO's highest health concern. Our highly sensitive and specific MPL RT-rPCR is considered suitable for further implementation in many laboratories, especially in developing countries.

2.
Microorganisms ; 9(9)2021 Sep 07.
Article in English | MEDLINE | ID: covidwho-1403852

ABSTRACT

BACKGROUND: Based on recent findings, we speculated the existence of the lung, heart, and kidney axis as the main pathway for the COVID-19 disease progression. METHODS: This paper reports on an observational study conducted by a team of researchers and doctors of the 118-Pre-Hospital and Emergency Department of SG Moscati of Taranto City in Italy. The study was conducted on a totality of 185 participants that were divided into three groups. The study group included COVID-19 affected patients (PP n = 80), the first control group included patients with different pathologies (non-COVID-19 NNp n = 62) of the SG Moscati Hospital, and the second control group included healthy individuals (NNh n = 43). The core of the current trial was focused on assessing the level of the vitamin D (serum 25(OH) D concentration), IL-6, and the renal glomerular filtrate (eGFR) in COVID-19 disease and non-COVID-19 patients in both groups. RESULTS: It was observed that the majority of COVID-19-infected patients showed a progressive multi-organ involvement, especially in regard to the lung, kidney, and heart. The majority of the COVID-19 patients exhibited preexisting comorbidities which include cardiovascular, respiratory, and renal disorders accompanied by a severely low level of vitamin D, extremely high level of IL-6, and low glomerular filtration rate (eGFR). The significant overall damages exerted by the immune-mediated responses under the hyper-expression of proinflammatory cytokines and interleukins, such as IL-6, may be facilitated by either a decreased level of vitamin D or the ageing process. The reduced presence of vitamin D was often found together with a reduced functionality of renal activity, as revealed by the low eGFR, and both were seen to be concomitant with an increased mortality risk in patients with lung disorders and heart failure (HF), whether it is showed at baseline or it develops during manifestation of COVID-19. Therefore, the documentation of the modifiable risk factors related to SARS-CoV-2 and lung impairment in older patients with kidney and heart disease may help the clinician to better manage the situation. CONCLUSIONS: This paper addresses how a low level of vitamin D and older age may be indicative of systemic worsening in patients with COVID-19, with a goal of providing a broader context in which to view a better therapeutic approach.

3.
Applied Sciences ; 11(4):1696, 2021.
Article in English | MDPI | ID: covidwho-1085122

ABSTRACT

Due to the promising effects of mesenchymal stem cells (MSCs) in the treatment of various diseases, this commentary aimed to focus on the auxiliary role of MSCs to reduce inflammatory processes of acute respiratory infections caused by the 2019 novel coronavirus (COVID-19). Since early in 2020, COVID-19, a consequence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly affected millions of people world-wide. The SARS-CoV-2 infection in children appears to be an unusual event. Despite the high number of affected adult and elderly, children and adolescents remained low in amounts, and marginally touched. Based on the promising role of cell therapy and regenerative medicine approaches in the treatment of several life-threatening diseases, it seems that applying MSCs cell-based approaches can also be a hopeful strategy for improving subjects with severe acute respiratory infections caused by COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL